1,459 research outputs found

    Spatiotemporal heterodyne detection

    Full text link
    We describe a scheme into which a camera is turned into an efficient tunable frequency filter of a few Hertz bandwidth in an off-axis, heterodyne optical mixing configuration, enabling to perform parallel, high-resolution coherent spectral imaging. This approach is made possible through the combination of a spatial and temporal modulation of the signal to reject noise contributions. Experimental data obtained with dynamically scattered light by a suspension of particles in brownian motion is interpreted

    (DH) Noise and Signal scaling factors in Digital Holography in week illumination: relationship with Shot Noise

    Get PDF
    We have performed off axis heterodyne holography with very weak illumination by recording holograms of the object with and without object illumination in the same acquisition run. We have experimentally studied, how the reconstructed image signal (with illumination) and noise background (without) scale with the holographic acquisition and reconstruction parameters that are the number of frames, and the number of pixels of the reconstruction spatial filter. The first parameter is related to the frequency bandwidth of detection in time, the second one to the bandwidth in space. The signal to background ratio varies roughly like the inverse of the bandwidth in time and space. We have also compared the noise background with the theoretical shot noise background calculated by Monte Carlo simulation. The experimental and Monte Carlo noise background agree very well together

    Phase-resolved heterodyne holographic vibrometry with a strobe local oscillator

    Get PDF
    We report a demonstration of phase-resolved vibrometry, in which out-of-plane sinusoidal motion is assessed by heterodyne holography. In heterodyne holography, the beam in the reference channel is an optical local oscillator (LO). It is frequency-shifted with respect to the illumination beam to enable frequency conversion within the sensor bandwidth. The proposed scheme introduces a strobe LO, where the reference beam is frequency-shifted and modulated in amplitude, to alleviate the issue of phase retrieval. The strobe LO is both tuned around the first optical modulation side band at the vibration frequency, and modulated in amplitude to freeze selected mechanical vibration states sequentially. The phase map of the vibration can then be derived from the demodulation of successive vibration states

    Digital Holography at Shot Noise Level

    Get PDF
    By a proper arrangement of a digital holography setup, that combines off-axis geometry with phase-shifting recording conditions, it is possible to reach the theoretical shot noise limit, in real-time experiments.We studied this limit, and we show that it corresponds to 1 photo-electron per pixel within the whole frame sequence that is used to reconstruct the holographic image. We also show that Monte Carlo noise synthesis onto holograms measured at high illumination levels enables accurate representation of the experimental holograms measured at very weak illumination levels. An experimental validation of these results is done
    • …
    corecore